LCOV - code coverage report
Current view: top level - nntrainer/layers - fc_layer.h (source / functions) Coverage Total Hit
Test: coverage_filtered.info Lines: 100.0 % 4 4
Test Date: 2025-12-14 20:38:17 Functions: 100.0 % 4 4

            Line data    Source code
       1              : // SPDX-License-Identifier: Apache-2.0
       2              : /**
       3              :  * Copyright (C) 2020 Parichay Kapoor <pk.kapoor@samsung.com>
       4              :  *
       5              :  * @file   fc_layer.h
       6              :  * @date   14 May 2020
       7              :  * @brief  This is Fully Connected Layer Class of Neural Network
       8              :  * @see    https://github.com/nnstreamer/nntrainer
       9              :  * @author Jijoong Moon <jijoong.moon@samsung.com>
      10              :  * @bug    No known bugs except for NYI items
      11              :  *
      12              :  */
      13              : 
      14              : #ifndef __FC_LAYER_H__
      15              : #define __FC_LAYER_H__
      16              : #ifdef __cplusplus
      17              : 
      18              : #include <common_properties.h>
      19              : #include <layer_impl.h>
      20              : 
      21              : namespace nntrainer {
      22              : 
      23              : /**
      24              :  * @class   FullyConnecedLayer
      25              :  * @brief   fully connected layer
      26              :  */
      27              : class FullyConnectedLayer : public LayerImpl {
      28              : public:
      29              :   /**
      30              :    * @brief     Constructor of Fully Connected Layer
      31              :    */
      32              :   FullyConnectedLayer();
      33              : 
      34              :   /**
      35              :    * @brief     Destructor of Fully Connected Layer
      36              :    */
      37         1886 :   ~FullyConnectedLayer() = default;
      38              : 
      39              :   /**
      40              :    *  @brief  Move constructor.
      41              :    *  @param[in] FullyConnected &&
      42              :    */
      43              :   FullyConnectedLayer(FullyConnectedLayer &&rhs) noexcept = default;
      44              : 
      45              :   /**
      46              :    * @brief  Move assignment operator.
      47              :    * @parma[in] rhs FullyConnectedLayer to be moved.
      48              :    */
      49              :   FullyConnectedLayer &operator=(FullyConnectedLayer &&rhs) = default;
      50              : 
      51              :   /**
      52              :    * @copydoc Layer::finalize(InitLayerContext &context)
      53              :    */
      54              :   void finalize(InitLayerContext &context) override;
      55              : 
      56              :   /**
      57              :    * @copydoc Layer::forwarding(RunLayerContext &context, bool training)
      58              :    */
      59              :   void forwarding(RunLayerContext &context, bool training) override;
      60              : 
      61              :   /**
      62              :    * @copydoc Layer::incremental_forwarding(RunLayerContext &context, unsigned
      63              :    * int from, unsigned int to, bool training)
      64              :    */
      65              :   void incremental_forwarding(RunLayerContext &context, unsigned int from,
      66              :                               unsigned int to, bool training) override;
      67              : 
      68              :   /**
      69              :    * @copydoc Layer::calcDerivative(RunLayerContext &context)
      70              :    */
      71              :   void calcDerivative(RunLayerContext &context) override;
      72              : 
      73              :   /**
      74              :    * @copydoc Layer::calcGradient(RunLayerContext &context)
      75              :    * @note
      76              :    * [note for LoRA] implicit calcDerivative is implicitly applied.
      77              :    * The weight is already updated with the LoRA's (W = W + W_lora)
      78              :    */
      79              :   void calcGradient(RunLayerContext &context) override;
      80              : 
      81              :   /**
      82              :    * @copydoc Layer::exportTo(Exporter &exporter, ml::train::ExportMethods
      83              :    * method)
      84              :    */
      85              :   void exportTo(Exporter &exporter,
      86              :                 const ml::train::ExportMethods &method) const override;
      87              : 
      88              :   /**
      89              :    * @copydoc Layer::getType()
      90              :    */
      91        19477 :   const std::string getType() const override {
      92        19477 :     return FullyConnectedLayer::type;
      93              :   };
      94              : 
      95              :   /**
      96              :    * @copydoc Layer::supportBackwarding()
      97              :    */
      98         1229 :   bool supportBackwarding() const override { return true; }
      99              : 
     100              :   /**
     101              :    * @copydoc Layer::setProperty(const PropertyType type, const std::string
     102              :    * &value)
     103              :    */
     104              :   void setProperty(const std::vector<std::string> &values) override;
     105              : 
     106              :   /**
     107              :    * @copydoc Layer::setBatch(RunLayerContext &context, unsigned int batch)
     108              :    */
     109              :   void setBatch(nntrainer::RunLayerContext &context,
     110              :                 unsigned int batch) override;
     111              : 
     112              :   static constexpr const char *type = "fully_connected";
     113              : 
     114              : private:
     115              :   float lora_scaling;
     116              :   std::tuple<props::Unit, props::LoraRank, props::LoraAlpha>
     117              :     fc_props;                             /**< fc layer properties :
     118              :                                                 unit - number of output neurons,
     119              :                                                 lora_rank - rank of lora (optional)
     120              :                                                 lora_scaling - scaling factor of LoRA apply, i.e.,
     121              :                                              lora_scaling = alpha / lora_rank */
     122              :   std::array<unsigned int, 2> weight_idx; /**< indices of the weights */
     123              :   std::array<unsigned int, 4> lora_idx;   /**< indices of the lora weights */
     124              :   std::unique_ptr<nntrainer::Quantizer> quantizer;
     125              : };
     126              : } // namespace nntrainer
     127              : 
     128              : #endif /* __cplusplus */
     129              : #endif /* __FC_LAYER_H__ */
        

Generated by: LCOV version 2.0-1